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As a noncommutative generalization of effect algebras, we introduce pseudoeffect al-
gebras and list some of their basic properties. For the purpose of a structure theory, we
further define several kinds of Riesz-like properties for pseudoeffect algebras and show
how they are interrelated.

INTRODUCTION

One possible approach to a better understanding of the quantum mechanical
formalism is to examine physically meaningful first-order structures derived from
Hilbert space. The structure that probably has been most intensively studied is the
orthomodaular lattice of closed subspaces of the standard Hilbert space. Although
optimal results have been obtained, not much has been gained concerning the
foundational problems.

Over the last 10 years or so, attention has moved to another aspect of Hilbert
space; instead of closed subspaces, which correspond to projection operators,
all the positive operators lying below the identity, called (quantum) effects, are
taken into consideration. Several different first-order axiom systems have been
introduced, modeled by structures, the ground set of which may be chosen as the set
of effects; among these are the weak orthoalgebras (Guintini and Greuling, 1989),
effect algebras (Foulis and Bennett, 1994), and D-posetpki‘and Chovanec,
1994). These three theories are equivalent in the sense that each of them possesses
definitional extensions to include the others. The first two use a partial sum, the
last a partial difference operation.

In this paper, we generalize the second mentioned structure; we examine
properties of pseudoeffect algebras that basically arise from effect algebras by
dropping commutativity.
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We are working toward a structure theory of pseudoeffect algebras. Unfortu-
nately, not much is known in this respect even for effect algebras. But the situation
becomes much better when one postulates a certain property that may be compared
with the Riesz Decomposition Property for po-groups. Itis then in fact possible to
show that our algebra is representable by an interval of a (not necessarily Abelian)
po-group. Similar work was done by Ravindran (1996) for effect algebras.

The paper is divided into two parts. In Part I, we give the axioms and basic
properties of the new structure and also introduce five nonequivalent properties of
Riesz type. If one among these is fulfilled, a pseudoeffect algebra is an interval of
a po-group, and this is proved in Part Il. Finally, we give necessary and sufficient
conditions for a pseudoeffect to be a pseudo-MV algebra; from this, it is possible
to re-prove that pseudo-MV algebras are intervalé-groups.

1. PSEUDOEFFECT ALGEBRAS

To model algebraically the set of quantum effects, that is, the set of self-
adjoint operators of a Hilbert space between zero and identity, the notion of an
effect algebra was introduced in Foulis and Bennett (1994). We recall that this
algebrais a structurée( +, 0, 1), where+ is a partial binary operation and 0 and
1 are constants, such that, for allb, c € E; (EAl) a + b is defined iffb + a is
defined, in which case these elements are equal; (EAD L) + c is defined iff
a+ (b + c) is defined, in which case these elements are equal; (EA3) for exactly
oned € E, we havea + d = 1; and (EA4) if 1+ a is defined, thera = 0. We
shall generalize this type of structure by dropping commutativity, that is, giving
up (EAL).

Definition 1.1. Astructure E; +, 0, 1), where+ is a partial binary operation and
0 and 1 are constants, is callegggeudoeffect algebrid, for all a, b, ¢ € E, the
following hold.

(E1) a+ b and @ + b) + c exist if and only ifb + c anda + (b + c) exist, and
in this case,d + b) +c=a+ (b + c).

(E2) There is exactly onel € E and exactly onee € E such thata+d =
e+a=1

(E3) Ifa+ bexists,there areelementse € Esuchthan+b=d+a=b+e.

(E4) If 1+ aora+ 1 exists, them = 0.

In view of (E2), we may define the two unary operationand~ by requiring for
anyae E

(EC) at+a =a t+a=1.

Remark. We may also, and we will occasionally in the sequel, consider a pseudo-
effect algebra as a structurg;(+,~,~, 0, 1), where+ is a partial binary operation,
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~,~ are unary operations, and 0, 1 are constants, such that (E1)-(E4) and (EC)
hold.

It is obvious how effect algebras are characterized among pseudoeffect
algebras.

Definition 1.2. Let (E; +, 0, 1) be a pseudoeffect algebras. We say that two ele-
mentsa andb of E commutef a 4+ b andb + a both exist and are equal.

We say that is commutativef, for a, b € E, a + b is defined if and only if
b + ais defined, in which case + b =b + a.

Proposition 1.3. Let(E; +, 0, 1) be a pseudoeffect algebra. Then E is an effect
algebra if and only if E is commutative.

In the sequel, by any equation to hold we mean that all sums that occur in it
exist, and it holds.

Because of the law of associativity, (E1), we may denote finite sums of ele-
ments of a pseudoeffect algebra without brackets.

Lemma 1.4. Let(E;+,0, 1) be a pseudoeffect algebra. For allla, c € E we
have the following:

(i) a+0=0+a=af(i.e.,0is aneutral element).
(i) a4+ b = 0implies a= b = 0 (positivity).
(i) 0"=0"=14,1"=1 =0.
(v aa~=a "~ =a
(v) a+b=a+ c implies b= c, and b+ a = c+ a implies b= c (can-
cellation laws).
(viy a+b=ciffa=(b+c™)" iffb=(c+a)".

Proof: We will prove first (v), then (iv), (iii), (i), and (ii), and finally (vi).

(v) Suppose + b = a + c. Then by (E2), for somd, we haved + (a + b) =
d+(@+c)=1andby(El),d +a)+b=(d+a)+c=1.By(E2),itfollows
thatb=(d+a)” =c.

Similarly, fromb+a=c+a, itfollowsthatb+a)+d=(c+a)+d=
1 for somed, sob+ (a+d)=c+(a+d)=1andb=(a+d)" =c.

(iv) By (E2),we havma+a~ =1=a"" +a~,andsoby (V)ja=a"".

Similarly,a"+a=1=a"+a ~,andsca=a"".

(i) By (E2),wehave I+ 1" =1 +1=1,and by (E4),T =1 = 0. By
(iv), wegetl=1"=0"and1=1"=0".

() By (iii) and (E1), we hava~ +a=1=14+1"=14+0=(a" +a) +
O0=a +(a+0),andby (vya=a+0.
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Similarly,a+a~=1=1"+4+1=0+1=(0+a)+a anda=0+a.

(i) By (i), a+b=0 impliesb™ =a+ b+ b~ =a+ 1, which, by (E4),
meansa = 0, so by (iv), (i), and (ii)b=b~" =(0+1)- =1~ =0.

(vi) Supposec=a+b. Thena+b+c =1=a+a", sob+c =a"
anda=a"" =(b+c™)". Similarly,c" +a+b=1=b"+b, sob=(c™ +
a)~. Supposea = (b+c~)". Thena~=b+c™, so l=a+b+c¢~ andc=
a+b. Supposd = (c” +a)~. Thenb~ =c” +a,s0l=c  +a+bandc=
a+b O

We introduce in the usual manner a partial order for pseudoeffect algebras.

Definition 1.5. Let(E; +, 0, 1) be a pseudoeffect algebra. We definesfds € E

a<b iffat+c=bforsomeceE.

Remark. From (E3), it is clear that

a<b ifd+a=bforsomad € E,

or, in other words, our order is two-sided. This was in fact the main motivation for
choosing the axiom (E3).

Lemma 1l.6. Let(E;+,0, 1) be a pseudoeffect algebra. The following hold in E
foralla,as, b, by, ce E:

(i) <isapartial orderon E.

(i) a<biffb™ <a iffb™ <a™. Thatis,” and™ are isomorphisms of the
order of E onto the dual order of E.

(i) Ifa+ bexists, a < a, and h < b, then also a+ b, exists.

(iv) a+bexistsiffa< b iffb <a™.

(V) Suppose b c exists. Then & b if and only if a+ c exists and & ¢ <
b + c. Suppose & b exists. Then & b if and only if c+ a exists and
c+a<c+b.

Proof:

(i) a<a,becausea +0=a.
Now,a < bandb < aimply a + a; = bandb + b; = afor some
a; andb;, soa+a; + by =a=a+0; this meansa; + b; =0 by
Lemma 1.4(v) anédy = b; = 0 by Lemma 1.4(ii); s@ = b.
Now,a < bandb < cimplya+ a = bandb + b; = cfor some
b, andcy, soa + a; + by = ¢, which means < c.
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(ii)

(iii)

(iv)

v)

Lemma

a < biff, forsomec, ¢ 4+ a = biff, by Lemma 1.4(vi), forsome, a~ =
b-+ciffb- <a.

Similarly, a < b iff, for somec, a+ ¢ = b iff, for somec,a™ =
c+b™iff b~ <a™.
If a+ b exists andh; + a; = a andb; + b} = b for somea; andby, it
follows that @; + a1) + (b, + b}) exists and so, by (E1), that + b,
exists.
a + b exists iff, for somed, a + b + d = 1 iff, for somed,a~ = b +d
iff b<a™.

Similarly, a + b exists iff, for somad, d + a + b = 1 iff, for some
d,b-=d+aiffa<b.
Supposeb + ¢ exists. Thema < b iff, for somed, d + a = b iff, for
somed,d +a+c=b+ciff a4+ cexistsanda+c <b+c.

Similarly, suppose that+ bexists. Them < biff, forsomed, a +
d = biff, forsomed,c+a+d=c+biff c+aexistsanc +a <
c+b. O

1.7. Let(E;+,0, 1) be a pseudoeffect algebra. For allla, c € E, we

have the following.

(i)

(ii)

Proof:

Letc+a, c+ b, and(c+ a) A (c+ b) exist. Thenan band c+ (a A b)
exist,andwe have¢ (a A b) = (c+a) A (c+ b).Leta+ ¢, b+ c,and
(a+c) A (b+c) exist. Then ax b and(a A b) + ¢ exist, and we have
(@anb)+c=(@+c)A(b+c).

Letav bandc+ (a vV b)exist. Thenet a, c+ b, and(c + a) v (c + b)
exist, and we have¢ (avb)=(c+a) Vv (c+b). Letavband(av
b) + c exist. Then a- ¢, b+ ¢, and(a + c) v (b + c) exist, and we have
(avb)+c=(a+c)v(b+c).

(i) As c < (c+ a) A (c+b), we have for soma thatc+d = (c+a) A

(c+b). Thenc+d <c+a,c+Db, and by Lemma 1.6(v)d < a, b.
Suppose < a, b. Then again by Lemma 1.6(v), we hawve- X < c+
a,c+b, thatis,c+x<(c+a)a(c+b)=c+dandx <d. It fol-
lows thatd = a A b.

The second part of (i) is proved similarly.

(i) Asa,b <avb,wehavebylLemma 1.6(v)that+ aandc + bexistand

c+(avb)>c+a,c+b. Letx >c+a, c+b. Then for somey, z,
we havex =c+a+y=c+b+2z Soa+y=b+z>avh, and
by Lemma 1.6(v), we get > ¢ + (a Vv b). It follows thatc + (a v b) =
(c+a) v (b+a).

The second part of (i) is proved similarly.c
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Remark 1.8. Lemma 1.7 may be easily generalized to the case that infinite infima
or suprema occur rather than infima or suprema of pairs of elements. So, for
example, if fora,, c € E, where: runs over some index set, the teyiy(c + a,)
exists, we may prove similarly as above thag /\,a, = /\ (C+ a).

In the sequel, by a property of partially ordered sets to hold in a pseudoeffect
algebrak, we mean that this property holds iB}(<), where< is the partial order
of E as introduced above. In particuldt, is said to be completes-complete,
or atomic iff E, considered as a partial ordered set, is compteteomplete, or
atomic, respectively. Moreover, we célla lattice pseudoeffect algebra E{<)
is a lattice.

2. INTERVAL PSEUDOEFFECT ALGEBRAS

We are interested in pseudoeffect algebras that arise from intervals in partially
ordered groups in the following manner.

Definition 2.1. Let (G; +, <) be a po-group and a positive element o&.

(i) We denote by@, u) the structureG; +, <, u), thatis, we add the element
u as a constant@, u) is called aunital po-groupif u is a strong unit of
G, that s, if for allg € G, there is am € N such that-nu < g < nu.

(i) We call the set

r(G,u) %
theunit intervalof (G, u). We denote byI{(G, u); +, 0, u) the structure
consisting of the unit interval of@, u), the partial binary operatios
that is the restriction of the group addition to those pairs of elements of
I'(G, u) whose sum lies again if(G, u), the neutral element dg, 0,
and the positive element

{geGT:g=<u}

As is easily checked (G, u); +, 0, u) is a pseudoeffect algebra. Fgre
I'(G, u), we have here

g =-g+u,

g =u-—g.
Furthermore, it is clear that the order defined 16(G, u); +, 0, u) coincides with
the order of the po-grou@ restricted td" (G, u).

Definition 2.2.

(i) A pseudoeffect algebraK; +, 0, 1) is called aninterval pseudoeffect
algebrg if there is a unital po-groupQd, u) such that E; +, 0, 1) and
(T(G, u); +, 0, u) are isomorphic.
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(i) Byahomomorphism from a pseudoeffectalgelifa-, 0, 1) into a unital
po-group G; +, <, u), we mean a functiop: E — G such thaty maps
into the positive cone dB, the sum, whenever defined, is preseryg@)
is the neutral element, ard1) = u.

An example of a noncommutative po-group leading to a noncommutative
pseudoeffect algebra is the following (Darnel, 1995, Example 4.1).

Example 2.3. LetG = Z x Z x Z; define for every two elements &

(a0, by, G1) + (@, b C)d_ef (a1 +ap, by +by,c1 + ) ifayis even,
LD RIS B2 T Y (@) +ap, by C1, by +Cp) i apis odd:

and define 4, by, ¢1) < (a, by, o) to hold if a; < a, or a; = ap, by < by, and
C1 < Cp.
Then G; +, <) is an¢-group, and

I'G, (1,0,0)={(0,b,c):b,c>0}U{(1,b,c):b,c <0}

becomes a pseudoeffect algebra with the sum and constants defined according to
Definition 2.1.

Both structures are noncommutative becausel,®) + (1, -2, —2) =
(1,0, -1), but (1 -2, -2)+ (0,1, 2) = (1, -1, 0).

3. PSEUDOEFFECT ALGEBRAS WITH RIESZ PROPERTIES

Our aim is to develop a structure theory for pseudoeffect algebras. But this is
hardly possible inthe general case. What we do here is what was proposed for effect
algebras by Ravindran (1996); that is, we assume a property that is comparable to
the Riesz Decomposition Property of po-groups.

Now there are several different possibilities for defining a property of Riesz
type for pseudoeffect algebras. In the present section, we shall in fact introduce
not less than five different ones. It is of interest that no one of these is equivalent
to any of the others, but they are linearly orderable by strength.

Definition 3.1. Let (E; +, 0, 1) be a pseudoeffect algebra.

(a) Fora, b € E, we writeacombto meanthatforakly <aandb; <b,a
andb; commute.

(b) We say that fulfils the Riesz Interpolation PropertgRIP) if, for any
a1, ap, by, b, € E such thatag, a, < by, by, there is ac € E such that
ag, a < C < by, by
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(c) We say that fulfils the Weak Riesz Decomposition Prope{l®DPy) if,
for any a, by, b, € E such thata < b; + by, there ared;, d, € E such
thatd; < by, d, < by, anda = d; + d,.

(d) We say that fulfils the Riesz Decomposition Propeitig DP) if, for any
ai, ap, by, b, € E such thal; + a, = by + by, there aredy, d, d3, dj €
E suchthat, 4+ d, = a;, d3 + d4 = ap, d; + d3 = by, andd, + ds = by.

(e) We say thatt fulfils the Commutational Riesz Decomposition Prop-
erty (RDP,) if, for any ay, ap, by, b, € E such thata; + a, = by + by,
there arel;, d,, d3, d4 € E suchthat (I)jl +dh=a;,d3+dy=ap,d; +
d3 = b]_, dz + d4 = bz and (II) d2 com d3.

(f) We say that fulfils the Strong Riesz Decomposition Propef®DP,) if,
for anyay, ap, by, by € E such thata; + a, = by + by, there ared;, da,
ds, ds € E such that (I)dl +dh=a,d3+dyg=a,d; +d3=by,dr +
ds = by and (ii)d, A d3 = 0.

It is clear that the&eom-relation is symmetric.

We note further that from the Riesz Decomposition Property (RDP) already
one special case of what is required in condition (ii) of (RP@asily follows:
With respect to the notations used in (d) and (e), we have from (RDP{i4tzetd
d; commute. Indeedd; + do+ s +dsy=as +a=b;+by=d; +ds3+d, +
ds and so, by Lemma 1.4(Wl, + d3 = d3 + d,.

Lemma 3.2. Let(E;+, 0, 1) be a pseudoeffect algebra fulfilling (RBP

(i) Leta b, c e E anda+ b exist. Then from aomc and bcomc it follows
that a+ b comc.
(i) fanb=0,thena+ b, b+ a, and av b exist and are all equal.

Proof:

(i) Supposacomcandbcomcandd < a+ b, ¢; < c. Because of (RD§)
there are elementy andd, such that; < a, d, < b, andd = d; + d,.
By assumption, each df andd, commutes wittty; so alsad = d; + dp
commutes withc;.

(ii) Let c be given such that > a, b; there is of course at least one such
element. So, for some, ¢ = x + b, and by (RDR), there are elements
d; < x, d» < bsuchthat = d; + dy. Becausel, < a, b, we haved, =
0, and s < x. It follows thatc = x + b > a + b. In particulara + b
exists, and aa + b is an upper bound & andb, it follows thata + b =
avb O
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Proposition 3.3. Let(E; +, 0, 1) be a pseudoeffect algebra.
(i) We have the implications
(RDP,) = (RDP,) = (RDP) = (RDPy) = (RIP).

The converse of any of these implications does not hold.
(i) E fulfils (RDR) if and only if E is lattice-ordered and fulfils (RRP
(iii) Let E be commutative. Then we have the implications

(RDP;) = (RDP;) & (RDP) & (RDR) = (RIP).

Any implication not shown here does not hold.

Proof:

(i) (RDP,) implies (RDR) by Lemma 3.2(ii); (RDI) implies trivially

(RDP); and it is evident that (RDP) implies (RBP

Now suppose (RD§)anda, b < ¢, d. Thenthereisaa; € E such
thata + a; = ¢, and fromb < a + a; it follows by (RDR) that there
aree < a andb < a; such thab = e+ b. Moreover, for soma € E,
we havea = e + &, and because < a, b, for somec, d, alsoc = e+ ¢
andd = e+d.

By Lemma 1.6(v), we hava, b <,
a+a =c=e+¢,itfollows thata+ b <

Now chooséy, € E suchthab; + b= d, andbecausa < b; + b,
there area < by and f < b such thata = a+ f. Chooseb € E such
thatb = b + f. Letx = a+b+ f.Thena,b <X <a+b < caswell
asx < by + b =d.Sox = e+ Xisthe interpolant required to show that
(RIP) holds.

The examples given later show that the converse of any of the
implications does not hold.

(i) Let E fulfil (RDP5). By (i), E fulfils (RDPy).

Leta,b € E. Thenfroma+ a~ = b + b, itfollows that there are
elementsl;, dy, d3, ds suchthat, +d, =a,ds +ds =a~,d; +d3 =
b,d, +ds = b™, andd, A d3 = 0. Then according to Lemma 3.2(ii),
we haved, + d3 = d; Vv d3, and according to Lemma 1.7(ii), we have
d1+d2+d3=d1+(d2\/d3)=(d1—‘rd2)V(d1+d3) =avhb. Soall
suprema exist.

It is easy to see that( v b™)~ = a A b. So also all infima exist.
HenceE is lattice-ordered.

Let E be lattice-ordered and fulfil (RQP. Leta; + a, = by + b,.
Setd; = a; A by andd,, dz in such a way thady = d; + dp, by = d; +
ds.

d, and frome+a+b <
C.
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We claimthatl, < b,. Indeed, frona; < b; + by, we getby (RDE)
thata; = e; + & for somee; < by, & < by, and frome; < a; A by =
di, we havea; < d; + by, so we concludel, < b,. Choosed, € E
such thatd, + ds = b,. Similarly, we may choosel, € E such that
ds; + dl’l = .

Furthermored, A d3 = 0. For, by Lemma 1.7(i), we hawe; =
a1 A by = (dy + dy) A (di + d3) = d; + (d2 A d3). From this we con-
cludethad1+d2+d3+d[1 =a+ap=b+b,=d +ds+dr+
dy = dy +dyr +d3+dg, SOd‘/‘ = d4. Sody, dy, ds, d, fulfil the require-
ments of Definition 3.1(f) of (RDE.

(iii) (RDPy)trivially follows from (RDP). (RDP)isto be derived from (RRQP

in the obvious manner (Ravindran, 1996, Lemma 2.12). The other im-
plications are proved in (i).
The examples given later show that none of the implications not shown
holds. O

For every possible combination of the different kinds of Riesz properties to
hold or not to hold in a pseudoeffect algebra, we will now give one example.

As an example of a pseudoeffect algebra in which (RDlds, a unit in-
terval in anyZ-group may serve (see, e.g., Fuchs, 1963, Theorem V.1). In this
way, a honcommutative pseudoeffect algebra has already been constructed; see
Example 2.3.

Example 3.4. (RDP,) & (RDP,). Let E be the set of rational functions from
the real unit interval to itself such that no singularities occur. Defirte be the
pointwise addition of two such functions whenever this leads to a result within
E; let 0 and 1 be the constant functions with value 0 and 1, respectively. Then
(E;+, 0, 1) is obviously an effect algebra and a fortiori a pseudoeffect algebra.
We shall see that (ROPholds inE, but (RDR) does not.

If, for fi, f2, g1, 92 € E, the equationf; + f, = g1 + g» holds, then the
four, continuously extended whenever necessary, functigs (g: + 92), f192/
(91 + 92), 201/(91 + 92), and f20,/(91 + 92) obviously fulfil the requirements
of the definition of (RDP). So, by commutativity, (RBDFholds inE.

On the other hand, (RBPwould by Proposition 3.3(ii) force an infimum of
any two functions ofE to exist in E, which is not the case. So (RPFfails to
hold.

Example 3.5. (variation of Fuchs, 1965, Example 3.10) (RBGBYXRDP,). Let
G be an additive group generated by the countably many elenggntgs, . . .;
let v:(G;+) — (R, +) be the homomorphism determined by the conditions
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v(g) = (%)i ,i =0,...;and letG fulfil the condition that everya € G such that
v(a)ﬁ 0 commutes with any othdr € G. Define a partial order i by setting
Gt = {x € G:x = 0 orv(x) > 0}; this means that we have farb € G

a<b iffa=borv(@) < v(b). Q)

We shall see that(G, go) fulfils (RDP), but not (RDP).

To prove (RDP), lety, ay, by, by, € T'(G, gp) be such thad; + ay = by + by;
we may suppose that, a,, by, b, > 0. We have to show that for sorkes G, the
scheme

a1 —k k — a1
k—ap+by —k+b, - a
(2)
\ \A
by b,

holds and every element in it is ING, go).

If v(a1) < v(by), we putk = 0; if v(ay) > v(by), we putk = —b; + a;. Let
now v(a;) = v(b;) and, because the caage= b, is trivial, let a; # b;. Because
then, —a; + b; commutes withk however chosen, we may put= g; chos-
ing i large enough to make every element in (2) strictly positive. So (RDP) is
proved.

Now consider again an equati@q + a, = by + b,, where 0< ag, ap, by,
b, < go, v(a1) = v(by), anda; # b;. For (2) to hold means th&tcan be neither
0 nor—b; + a;. It follows that for a sufficiently large natural numbemwe have
0 <k —a + by andgi;1 < k; butg, andg;.; do not commute. So (RDPdoes
not hold.

Example 3.6.(RDPy) %4 (RDP). Similar to the previous example, I&t be
the additive group generated freely by countably many elenmgnts, . . .; let
v:(G; +) — (R, +) be the homomorphism determined by the conditiefts ) =
v(Q2i+1) = (3)'.i =0,.... Define a partial order irG by settingG* Lhix e
G:x =0 or v(x) > 0}; then again (1) holds. We shall see thgG, go) fulfils
(RDR), but not (RDP).

Indeed, leta, by, by € T'(G, go) be such thah < b; + by. By (1), it is then
clear that for somé € I'(G, gp), we have O< a—k < b; and 0< k < b,. So
(RDRy) holds.

On the other hand, consider the equatipn+ (—g + 3d4) = gz + (—0s +
3d4), and suppose that there are four elements as required by Definition 3.1(d).
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This means that for sontee G the following scheme holds:

g —kK K — o7

K—02+03 K 3 3

Cgreik T O3 +9094 — —02+ 904 3)
\: \:
O3 —03 + 304

We have especiallit + (—0z + g3) = (—092 + 93) + k. From this it follows that
k = z(—g + gs) for somez € Z. Now k is required to be irG*, which is only
the case foz = 0. Buttherk — g, + g3 = —92 + g3 ¢ G™. It follows that (RDP)
does not hold.

Example 3.7.(RIP)# (RDPR,). Let(E;+,0, 1,) be the diamond (Dvurehskij

and Pulmannaa, 2000, Example 1.9.23); that is, IEt={a, b, 0, 1}, and let+ be

defined iff one argument is 0 or both argumentsaaoe both areb, in which latter

casesthe sumis 1. Thénis an effect algebra and a fortiori a pseudoeffect algebra.
As is easily checked fulfils (RIP). But it does not fulfil (RDE) , as is seen,

for example, from the inequality < b + b.

Example 3.8. An example of an effect algebra, so also of a pseudoeffect algebra,
that does not fulfil (RIP) is the standard effect algeldidd); +, O, 1), where£(H)
is the set of positive operators less than identity in an at least two-dimensional
complex Hilbert spacet- is the sum of two operators defined when it is less than
identity, and O is the zerd, the identity operatot.

Let us first show that (RIP) fails wheh is two-dimensional, that iy = C2.
The positive operators dfi are those self-adjoint operators whose determinant
and trace are-0; so their matrices have the form

p_ t—x y-—iz
C\y+iz t4x
for somex, y, z,t € R such thaix? + y? + 2% < t> andt > 0. Let
1/1 0 1/7 0
A1_1_8<0 7)7 A2—1_8<0 1)7

1/(9 4 19 -4
5121_8(4 9)’ BZ:Tg(—4 9)'

2We are indebted to Prof. Robin Hudson for his useful suggestions concerning the following proof.
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Then we have G A1, A; < By, B, < |. Suppose for some operator
t—x —i
C_ X y—iz
y+iz t+4+X

that A;, A, < C < B4, B,. The condition®C — A;,C - A,,B;—C, B, —C >
0 lead to

O©IN
NI =

<t<

)

m+}2+2+£<t—32
g) TV < 5)
ﬁ+|w+g2+£< }—tz

9 - \2 ’

from which we further deriveé > 7/18 as well ag < 5/18. So (RIP) does not
hold in the two-dimensional case.

Now supposéd has any dimensior2, and define the operatofg, Az, By,
B,, when restricted to some two-dimensional subspégeas above, and let them
map to 0 onHy". Now, for another operatd, the conditionC < B; means that
also the kernel o€ includesHy . So by the same reasoning as before, (RIP) fails
to hold.

We note thaE(H) is, like the other examples given above, an interval pseudo-
effect algebra; we havé€(H) = I'(B(H)sa, 1), Where 5(H)sq is the set of all
bounded self-adjoint operators ldf

Afurther property of Riesz type involves any finite number of elements rather
than a maximum of four.

To make collections of formulas as they will appear in the sequel more easily
readable, we use the following abbreviation. gt &,b; e E,1 <i <m,1 <
j =n.By

dyg -+ dn — &
dni -+ dmn — am
J 2
by --- b,

wemearth; +---+d, =g fori =1,...,mandd;j +--- + dm; = bj for j =
1,...,n.
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Lemma 3.9. Let(E;+, 0, 1) be a pseudoeffect algebra fulfilling (RPPLet
a1+ +am=bi+---+by,

where mn > 1. Then there are elementsd. . ., dnn € E such that

dig -+ din — &
dm -+ dmn — am
J J
by --- by

and suchthatfol <i <m,1<j < n, we have

di+1,j +"'+dmj comdi,j+1+ <o+ din.

Proof: The lemma is trivial fom=1orn=1, and it is true fom=n =2
because of (RDf.

Suppose it is true for any pair of integers such that the first is less than or
equal tom, wherem > 2, and the second is less thapwheren > 3. From this
condition, we shall prove that the lemma is also true for therpair. By complete
induction, it then follows that it is true in general.

Soleta; + .-+ +am = by + - - - + b,. By the induction hypothesis, there are
elementg;y, ..., dnn_2, €1, ..., en € E such that

di1 -+ dynee e i

dn1 - dm,n—z €m —  8m
) ) h

bl toe bn—2 bnfl + bn

andforl<i <m,1<j <n-2wehave
diyrj+ -+ dmjcomd jia+---+din2+6.

Moreover, frome; + - - - + ey, = bh_1 + by, we have by the same hypothesis that
there are elementtj n_1, thn, ..., dmn-1, dmn € E such that

dip-1 tin — e
dm,n—l don — €enm

\: \:
bho1  bn
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andforl<i <m-—1,

di+1,nfl +-- 4+ dm,nfl Comdin~

It follows that the lemma is true for the pair, n. O

The following consequences of the Weak Riesz Decomposition Property seem
to be notable.

Proposition 3.10. Every finite pseudoeffectalgel{; +, 0, 1) fulfilling (RDP)
is commutative.

Proof: Let (E;+ 0, 1) be finite. Then every elemeate E is the sum of finitely
many atoms oE. Indeed, below every nonzeeoe E lies an atom; otherwisd;
would not be finite. So choose an aten< a; if a £ e;, choose an atom below
€, wheree; + € = a; and so on. Then for some we havea =e; + - - - + €&;
otherwise E would not be finite.

Now suppose thdE fulfils (RDPy). Then any two atoms dE commute. For
either they are equal or their infimum is 0, whence, because of Lemma 3.2(ii),
their sum exists and does not depend on the order. So we conclude that any two
summable elements & commute. O

Proposition3.11. Everycomplete and atomic lattice pseudoeffect algéBra,
0, 1) fulfilling (RDPy) is commutative.

Proof: We claim that for every atora € E and everyx € E, there is a largest
n € N such thana < x; we will denote this number bjs(x). For suppose there is
no sucm. Thenmais defined for anyn, so by Lemma 1.6(iv) and the completeness
of E, we havema< a~ foranym, so\/,,ma < a~, which meansthalf,,ma) + a
exists. By Remark 1.8, we conclud¢/{ ma) + a = \/,(ma+ a) = \/,,ma, that
is,a=0.

Itis now easy to see that for evexye E, we may writex = \/, 1) ja(X),
where A(E) is the set of all atoms dE.

As in the proof of Proposition 3.10, we see that multiples of two atoms
commute. So by Remark 1.8, we have, for any € E,

x+y=\/ jaa+ \/ jawa= \/ \/ (a®a+ismb)=y+x.

acA(E) acA(E) ac A(E) be A(E)
O
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4. po-GROUPS WITH RIESZ PROPERTIES

We define the different properties of Riesz type for po-groups in exact analogy
to those of pseudoeffect algebras.

Definition 4.1. Let (G; +, <) be a directed po-group with neutral element 0.

(@) Fora, b, > 0, we writea com b to mean that for alky, b; such that
0 <a; <aand0< by < b, a; andb; commute.

(b) We say thats fulfils the Riesz Interpolation Propert¢RIP) if, for any
ai, ap, by, by suchthaby, a, < by, by, thereisa € G such thaty, a, <
C < by, bo.

(c) We say thatG fulfils the Weak Riesz Decomposition Prope(BDPy)
if, for any a, by, b, > 0 such that < b; + by, there arad;, d, € G such
that0<d; <by,0<dy < by, anda = d; + d,.

(d) We say tha6 fulfils the Riesz Decomposition Propeifig DP) if, for any
ai, ap, by, b, > 0 such thaty + a, = by + by, there aray, d,, d3, ds >
Osuchthatl, + d, = a1, d3 + dy = ap, d; + d3 = by, andd, + ds = by.

(e) We say thaG fulfils the Commutational Riesz Decomposition Property
(RDPy), if, for any a3, a, by, b, > 0 such that; + a; = by + by, there
ared,, d,, d3, d4 > Osuchthat (ujl +h=a,d3+ds=ay,d; +d3 =
by, d> + ds = by and (ii) d, comds.

(f) We say that fulfils the Strong Riesz Decomposition Propel®DP,) if,
foranyay, ap, by, b, > Osuchthad; + a, = by + by, therearely, d,, ds,
ds > 0 such that (I) d+d=a,da+ds=ay,d+dz3=by,dr+
ds = by and (ii)d, A d3 = 0.

Proposition 4.2. Let(G;+, <) be a directed po-group.
(i) We have the implications
(RDP,) = (RDP,) = (RDP) = (RDR) & (RIP).

There are no more implications holding between these conditions.
(ii) G fulfils (RDR) if and only if G is lattice-ordered.
(i) Let G be Abelian. Then we have the implications

(RDP,) = (RDPy) & (RDP) & (RDPRy) & (RIP).

The implication not shown does not hold.

Proof: (ii) Let (RDP,) hold. Similarly as for Lemma 3.2(ii), we may prove
that, fora, b € G, froma A b =0, it follows thata v b = a + b. Furthermore,
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it is easy to see that, fa, b, c € G, if a v b exists, we have + (a v b) = (c +
a) v (c + b). Now, we may, analogously to Proposition 3.3(ii), prove that, for
a,b e G*, a v balways exists.

Using Birkhoff (1995), XIII, §3, Eq. (7), we conclude that, fa, b € G*,
(avb)—b=(a—b)vO0holds. Becaus€ is directed, we hav& = G* — G*
(Fuchs, 1963, Proposition 11.1). So, for glie G, g Vv 0 exists, which, by Birkhoff
(1995), XIlI, §3, Lemma 1, means th& is an¢-group.

Conversely, in alt-groups, (RDPR) holds (Fuchs, 1963, Theorem V.1).

(i) If (RDPy) holds,G is, by (ii), an¢-group. Elementa andb in an¢-group
are such thaa A b = 0 commute (Birkhoff, 1995, XI11§3, Eq. (13)); so (RDP
holds. From (RDP) follows (RDP), and from (RDP) follows (RO trivially.
(RDPy) and (RIP) are equivalent according to Fuchs (1965), Theorem 2.2.

That the converse implications in three cases do not hold is seen from the
examples given above for pseudoeffect algebras. So the group of rational funtions
from [0, 1] to R with no singularities (see Example 3.4) fulfils (RDPbut not
(RDPR,). The group described in Example 3.5 fulfils (RDP), but not (RDPhe
group described in Example 3.6 fulfils (RIP), but not (RDP).

(iii) (RDP,) trivially follows from (RDP). (RDP) is to be derived from (RIgP
in the obvious manner (Goodearl, 1986, Proposition 2.1). The other implications
are proved in (i).

Example 3.4 shows that from (RDR property (RDR) does not follow. O

ACKNOWLEDGMENT

This work was supported by Grant VEGA 2/7193/20 SAV, Bratislava,
Slovakia.

REFERENCES

Birkhoff, G. (1995).Lattice Theory 3rd Ed., Colloquium Publications 25, American Mathematical
Society, Providence, Rhode Island.

Darnel, M. R. (1995)Theory of Lattice-Ordered GroupMarcel Dekker, New York.

Dvurecenskij, A. and Pulmannay'S. (2000)New Trends in Quantum Structuréduwer, Dordrecht,
and Ister Science, Bratislava.

Foulis, D. J. and Bennett, M. K. (1994). Effect algebras and unsharp quantum lemicsl. Phys24,
1325-1346.

Fuchs, L. (1963)Partially Ordered Algebraic SystemBergamon Press, Oxford.

Fuchs, L. (1965). Riesz group&nn. Scuola Norm. Sup. Pis 19, 1-34.

Giuntini, R. and Greuling, H. (1989). Towards a formal language for unsharp propéaiesd. Phys.
19, 931-945.

Goodearl, K. R. (1986 )Partially Ordered Abelian Groups with InterpolatioMathematical Surveys
and Monographs 20, American Mathematical Society, Providence, Rhode Island.

Kdpka, F. and Chovanec, F. (1994). D-poshktath. Slovacat4, 21-34.

Ravindran, K. (1996). On a structure theory of effect algebras, Ph.D. Thesis. Kansas State Univ.,
Manhattan, Kansas.



