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As a noncommutative generalization of effect algebras, we introduce pseudoeffect al-
gebras and list some of their basic properties. For the purpose of a structure theory, we
further define several kinds of Riesz-like properties for pseudoeffect algebras and show
how they are interrelated.

INTRODUCTION

One possible approach to a better understanding of the quantum mechanical
formalism is to examine physically meaningful first-order structures derived from
Hilbert space. The structure that probably has been most intensively studied is the
orthomodular lattice of closed subspaces of the standard Hilbert space. Although
optimal results have been obtained, not much has been gained concerning the
foundational problems.

Over the last 10 years or so, attention has moved to another aspect of Hilbert
space; instead of closed subspaces, which correspond to projection operators,
all the positive operators lying below the identity, called (quantum) effects, are
taken into consideration. Several different first-order axiom systems have been
introduced, modeled by structures, the ground set of which may be chosen as the set
of effects; among these are the weak orthoalgebras (Guintini and Greuling, 1989),
effect algebras (Foulis and Bennett, 1994), and D-posets (Kˆopka and Chovanec,
1994). These three theories are equivalent in the sense that each of them possesses
definitional extensions to include the others. The first two use a partial sum, the
last a partial difference operation.

In this paper, we generalize the second mentioned structure; we examine
properties of pseudoeffect algebras that basically arise from effect algebras by
dropping commutativity.
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We are working toward a structure theory of pseudoeffect algebras. Unfortu-
nately, not much is known in this respect even for effect algebras. But the situation
becomes much better when one postulates a certain property that may be compared
with the Riesz Decomposition Property for po-groups. It is then in fact possible to
show that our algebra is representable by an interval of a (not necessarily Abelian)
po-group. Similar work was done by Ravindran (1996) for effect algebras.

The paper is divided into two parts. In Part I, we give the axioms and basic
properties of the new structure and also introduce five nonequivalent properties of
Riesz type. If one among these is fulfilled, a pseudoeffect algebra is an interval of
a po-group, and this is proved in Part II. Finally, we give necessary and sufficient
conditions for a pseudoeffect to be a pseudo-MV algebra; from this, it is possible
to re-prove that pseudo-MV algebras are intervals in`-groups.

1. PSEUDOEFFECT ALGEBRAS

To model algebraically the set of quantum effects, that is, the set of self-
adjoint operators of a Hilbert space between zero and identity, the notion of an
effect algebra was introduced in Foulis and Bennett (1994). We recall that this
algebra is a structure (E;+, 0, 1), where+ is a partial binary operation and 0 and
1 are constants, such that, for alla, b, c ∈ E; (EA1) a+ b is defined iffb+ a is
defined, in which case these elements are equal; (EA2) (a+ b)+ c is defined iff
a+ (b+ c) is defined, in which case these elements are equal; (EA3) for exactly
oned ∈ E, we havea+ d = 1; and (EA4) if 1+ a is defined, thena = 0. We
shall generalize this type of structure by dropping commutativity, that is, giving
up (EA1).

Definition 1.1. A structure (E;+, 0, 1), where+ is a partial binary operation and
0 and 1 are constants, is called apseudoeffect algebraif, for all a, b, c ∈ E, the
following hold.

(E1) a+ b and (a+ b)+ c exist if and only ifb+ c anda+ (b+ c) exist, and
in this case, (a+ b)+ c = a+ (b+ c).

(E2) There is exactly oned ∈ E and exactly onee∈ E such thata+ d =
e+ a = 1.

(E3) Ifa+ bexists, there are elementsd, e∈ E such thata+ b = d + a = b+ e.
(E4) If 1+ a or a+ 1 exists, thena = 0.

In view of (E2), we may define the two unary operations∼ and− by requiring for
anya ∈ E

(EC) a+ a∼ = a− + a = 1.

Remark. We may also, and we will occasionally in the sequel, consider a pseudo-
effect algebra as a structure (E;+,∼,−, 0, 1), where+ is a partial binary operation,
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∼, − are unary operations, and 0, 1 are constants, such that (E1)–(E4) and (EC)
hold.

It is obvious how effect algebras are characterized among pseudoeffect
algebras.

Definition 1.2. Let (E; +, 0, 1) be a pseudoeffect algebras. We say that two ele-
mentsa andb of E commuteif a+ b andb+ a both exist and are equal.

We say thatE is commutativeif, for a, b ∈ E,a+ b is defined if and only if
b+ a is defined, in which casea+ b = b+ a.

Proposition 1.3. Let (E;+, 0, 1) be a pseudoeffect algebra. Then E is an effect
algebra if and only if E is commutative.

In the sequel, by any equation to hold we mean that all sums that occur in it
exist, and it holds.

Because of the law of associativity, (E1), we may denote finite sums of ele-
ments of a pseudoeffect algebra without brackets.

Lemma 1.4. Let (E;+, 0, 1) be a pseudoeffect algebra. For all a, b, c ∈ E we
have the following:

(i) a+ 0= 0+ a = a (i.e.,0 is a neutral element).
(ii) a+ b = 0 implies a= b = 0 (positivity).
(iii) 0∼ = 0− = 1, 1∼ = 1− = 0.
(iv) a∼− = a−∼ = a.
(v) a+ b = a+ c implies b= c, and b+ a = c+ a implies b= c (can-

cellation laws).
(vi) a+ b = c iff a = (b+ c∼)− iff b = (c− + a)∼.

Proof: We will prove first (v), then (iv), (iii), (i), and (ii), and finally (vi).
(v) Supposea+ b = a+ c. Then by (E2), for somed, we haved + (a+ b) =

d + (a+ c) = 1, and by (E1), (d + a)+ b = (d + a)+ c = 1. By (E2), it follows
thatb = (d + a)∼ = c.

Similarly, fromb+ a = c+ a, it follows that (b+ a)+ d = (c+ a)+ d =
1 for somed, sob+ (a+ d) = c+ (a+ d) = 1 andb = (a+ d)− = c.

(iv) By (E2), we havea+ a∼ = 1= a∼− + a∼, and so by (v),a = a∼−.
Similarly, a− + a = 1= a− + a−∼, and soa = a−∼.
(iii) By (E2), we have 1+ 1∼ = 1− + 1= 1, and by (E4), 1∼ = 1− = 0. By

(iv), we get 1= 1∼− = 0− and 1= 1−∼ = 0∼.
(i) By (iii) and (E1), we havea− + a = 1= 1+ 1∼ = 1+ 0= (a− + a)+

0= a− + (a+ 0), and by (v),a = a+ 0.
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Similarly, a+ a∼ = 1= 1− + 1= 0+ 1= (0+ a)+ a∼ anda = 0+ a.
(ii) By (i), a+ b = 0 implies b∼ = a+ b+ b∼ = a+ 1, which, by (E4),

meansa = 0, so by (iv), (i), and (iii),b = b∼− = (0+ 1)− = 1− = 0.
(vi) Supposec = a+ b. Thena+ b+ c∼ = 1= a+ a∼, so b+ c∼ = a∼

anda = a∼− = (b+ c∼)−. Similarly, c− + a+ b = 1= b− + b, so b = (c− +
a)∼. Supposea = (b+ c∼)−. Then a∼ = b+ c∼, so 1= a+ b+ c∼ and c =
a+ b. Supposeb = (c− + a)∼. Thenb− = c− + a, so 1= c− + a+ b andc =
a+ b. ¤

We introduce in the usual manner a partial order for pseudoeffect algebras.

Definition 1.5. Let (E;+, 0, 1) be a pseudoeffect algebra. We define fora, b ∈ E

a ≤ b iff a+ c = b for somec ∈ E.

Remark. From (E3), it is clear that

a ≤ b iff d + a = b for somed ∈ E,

or, in other words, our order is two-sided. This was in fact the main motivation for
choosing the axiom (E3).

Lemma 1.6. Let (E;+, 0, 1) be a pseudoeffect algebra. The following hold in E
for all a,a1, b, b1, c ∈ E:

(i) ≤ is a partial order on E.
(ii) a ≤ b iff b− ≤ a− iff b∼ ≤ a∼. That is,− and∼ are isomorphisms of the

order of E onto the dual order of E.
(iii) If a + b exists, a1 ≤ a, and b1 ≤ b, then also a1+ b1 exists.
(iv) a+ b exists iff a≤ b− iff b ≤ a∼.
(v) Suppose b+ c exists. Then a≤ b if and only if a+ c exists and a+ c ≤

b+ c. Suppose c+ b exists. Then a≤ b if and only if c+ a exists and
c+ a ≤ c+ b.

Proof:

(i) a ≤ a, becausea+ 0= a.
Now,a ≤ b andb ≤ a imply a+ a1 = b andb+ b1 = a for some

a1 and b1, so a+ a1+ b1 = a = a+ 0; this meansa1+ b1 = 0 by
Lemma 1.4(v) anda1 = b1 = 0 by Lemma 1.4(ii); soa = b.

Now, a ≤ b andb ≤ c imply a+ a1 = b andb+ b1 = c for some
b1 andc1, soa+ a1+ b1 = c, which meansa ≤ c.
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(ii) a ≤ b iff, for somec, c+ a = b iff, by Lemma 1.4(vi), for somec,a− =
b− + c iff b− ≤ a−.

Similarly, a ≤ b iff, for somec,a+ c = b iff, for somec,a∼ =
c+ b∼ iff b∼ ≤ a∼.

(iii) If a+ b exists anda′1+ a1 = a andb1+ b′1 = b for somea′1 andb′1, it
follows that (a′1+ a1)+ (b1+ b′1) exists and so, by (E1), thata1+ b1

exists.
(iv) a+ b exists iff, for somed,a+ b+ d = 1 iff, for somed,a∼ = b+ d

iff b ≤ a∼.
Similarly, a+ b exists iff, for somed, d + a+ b = 1 iff, for some

d, b− = d + a iff a ≤ b−.
(v) Supposeb+ c exists. Thena ≤ b iff, for some d, d + a = b iff, for

somed, d + a+ c = b+ c iff a+ c exists anda+ c ≤ b+ c.

Similarly, suppose thatc+ bexists. Thena ≤ b iff, for somed,a+
d = b iff, for somed, c+ a+ d = c+ b iff c+ a exists andc+ a ≤
c+ b. ¤

Lemma 1.7. Let (E;+, 0, 1) be a pseudoeffect algebra. For all a, b, c ∈ E, we
have the following.

(i) Let c+ a, c+ b, and(c+ a) ∧ (c+ b) exist. Then a∧ b and c+ (a ∧ b)
exist, and we have c+ (a ∧ b) = (c+ a) ∧ (c+ b). Let a+ c, b+ c,and
(a+ c) ∧ (b+ c) exist. Then a∧ b and(a ∧ b)+ c exist, and we have
(a ∧ b)+ c = (a+ c) ∧ (b+ c).

(ii) Let a∨ b and c+ (a ∨ b) exist. Then c+ a, c+ b, and(c+ a) ∨ (c+ b)
exist, and we have c+ (a ∨ b) = (c+ a) ∨ (c+ b). Let a∨ b and(a ∨
b)+ c exist. Then a+ c, b+ c, and(a+ c) ∨ (b+ c) exist, and we have
(a ∨ b)+ c = (a+ c) ∨ (b+ c).

Proof:
(i) As c ≤ (c+ a) ∧ (c+ b), we have for somed that c+ d = (c+ a) ∧

(c+ b). Then c+ d ≤ c+ a, c+ b, and by Lemma 1.6(v),d ≤ a, b.
Supposex ≤ a, b. Then again by Lemma 1.6(v), we havec+ x ≤ c+
a, c+ b, that is,c+ x ≤ (c+ a) ∧ (c+ b) = c+ d and x ≤ d. It fol-
lows thatd = a ∧ b.

The second part of (i) is proved similarly.
(ii) As a, b ≤ a ∨ b,we have by Lemma 1.6(v) thatc+ a andc+ bexist and

c+ (a ∨ b) ≥ c+ a, c+ b. Let x ≥ c+ a, c+ b. Then for somey, z,
we havex = c+ a+ y = c+ b+ z. So a+ y = b+ z≥ a ∨ b, and
by Lemma 1.6(v), we getx ≥ c+ (a ∨ b). It follows thatc+ (a ∨ b) =
(c+ a) ∨ (b+ a).

The second part of (ii) is proved similarly.¤
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Remark 1.8. Lemma 1.7 may be easily generalized to the case that infinite infima
or suprema occur rather than infima or suprema of pairs of elements. So, for
example, if foraι, c ∈ E, whereι runs over some index set, the term

∧
ι(c+ aι)

exists, we may prove similarly as above thatc+∧ι aι =
∧
ι(c+ aι).

In the sequel, by a property of partially ordered sets to hold in a pseudoeffect
algebraE, we mean that this property holds in (E;≤),where≤ is the partial order
of E as introduced above. In particular,E is said to be complete,σ -complete,
or atomic iff E, considered as a partial ordered set, is complete,σ -complete, or
atomic, respectively. Moreover, we callE a lattice pseudoeffect algebra if (E;≤)
is a lattice.

2. INTERVAL PSEUDOEFFECT ALGEBRAS

We are interested in pseudoeffect algebras that arise from intervals in partially
ordered groups in the following manner.

Definition 2.1. Let (G;+,≤) be a po-group andu a positive element ofG.

(i) We denote by (G, u) the structure (G;+,≤, u), that is, we add the element
u as a constant. (G, u) is called aunital po-group if u is a strong unit of
G, that is, if for allg ∈ G, there is ann ∈ N such that−nu≤ g ≤ nu.

(ii) We call the set

0(G, u)
def= {g ∈ G+: g ≤ u}

theunit intervalof (G, u). We denote by (0(G, u);+, 0, u) the structure
consisting of the unit interval of (G, u), the partial binary operation+
that is the restriction of the group addition to those pairs of elements of
0(G, u) whose sum lies again in0(G, u), the neutral element ofG, 0,
and the positive elementu.

As is easily checked, (0(G, u);+, 0, u) is a pseudoeffect algebra. Forg ∈
0(G, u), we have here

g∼ = −g+ u,

g− = u− g.

Furthermore, it is clear that the order defined for (0(G, u);+, 0, u) coincides with
the order of the po-groupG restricted to0(G, u).

Definition 2.2.

(i) A pseudoeffect algebra (E;+, 0, 1) is called aninterval pseudoeffect
algebra, if there is a unital po-group (G, u) such that (E;+, 0, 1) and
(0(G, u);+, 0, u) are isomorphic.
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(ii) By a homomorphism from a pseudoeffect algebra (E;+, 0, 1) into a unital
po-group (G;+,≤, u), we mean a functionϕ: E→ G such thatϕ maps
into the positive cone ofG, the sum, whenever defined, is preserved,ϕ(0)
is the neutral element, andϕ(1)= u.

An example of a noncommutative po-group leading to a noncommutative
pseudoeffect algebra is the following (Darnel, 1995, Example 4.1).

Example 2.3. Let G = Z× Z× Z; define for every two elements ofG

(a1, b1, c1)+ (a2, b2, c2)
def=
{

(a1+ a2, b1+ b2, c1+ c2) if a2 is even,

(a1+ a2, b2+ c1, b1+ c2) if a2 is odd;

and define (a1, b1, c1) ≤ (a2, b2, c2) to hold if a1 < a2 or a1 = a2, b1 ≤ b2, and
c1 ≤ c2.

Then (G;+,≤) is an`-group, and

0(G, (1, 0, 0))= {(0, b, c): b, c ≥ 0} ∪ {(1, b, c): b, c ≤ 0}
becomes a pseudoeffect algebra with the sum and constants defined according to
Definition 2.1.

Both structures are noncommutative because, (0, 1, 2)+ (1,−2,−2)=
(1, 0,−1), but (1,−2,−2)+ (0, 1, 2)= (1,−1, 0).

3. PSEUDOEFFECT ALGEBRAS WITH RIESZ PROPERTIES

Our aim is to develop a structure theory for pseudoeffect algebras. But this is
hardly possible in the general case. What we do here is what was proposed for effect
algebras by Ravindran (1996); that is, we assume a property that is comparable to
the Riesz Decomposition Property of po-groups.

Now there are several different possibilities for defining a property of Riesz
type for pseudoeffect algebras. In the present section, we shall in fact introduce
not less than five different ones. It is of interest that no one of these is equivalent
to any of the others, but they are linearly orderable by strength.

Definition 3.1. Let (E;+, 0, 1) be a pseudoeffect algebra.

(a) Fora, b ∈ E, we writea comb to mean that for alla1 ≤ a andb1 ≤ b,a1

andb1 commute.
(b) We say thatE fulfils the Riesz Interpolation Property(RIP) if, for any

a1,a2, b1, b2 ∈ E such thata1,a2 ≤ b1, b2, there is ac ∈ E such that
a1,a2 ≤ c ≤ b1, b2.
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(c) We say thatE fulfils theWeak Riesz Decomposition Property(RDP0) if,
for any a, b1, b2 ∈ E such thata ≤ b1+ b2, there ared1, d2 ∈ E such
thatd1 ≤ b1, d2 ≤ b2, anda = d1+ d2.

(d) We say thatE fulfils theRiesz Decomposition Property(RDP) if, for any
a1,a2, b1, b2 ∈ E such thata1+ a2 = b1+ b2, there ared1, d2, d3, d4 ∈
E such thatd1+ d2 = a1, d3+ d4 = a2, d1+ d3 = b1, andd2+ d4 = b2.

(e) We say thatE fulfils the Commutational Riesz Decomposition Prop-
erty (RDP1) if, for any a1,a2, b1, b2 ∈ E such thata1+ a2 = b1+ b2,
there ared1, d2, d3, d4 ∈ E such that (i)d1+ d2 = a1, d3+ d4 = a2, d1+
d3 = b1, d2+ d4 = b2 and (ii)d2 comd3.

(f) We say thatE fulfils theStrong Riesz Decomposition Property(RDP2) if,
for anya1,a2, b1, b2 ∈ E such thata1+ a2 = b1+ b2, there ared1, d2,

d3, d4 ∈ E such that (i)d1+ d2 = a1, d3+ d4 = a2, d1+ d3 = b1, d2+
d4 = b2 and (ii)d2 ∧ d3 = 0.

It is clear that thecom-relation is symmetric.
We note further that from the Riesz Decomposition Property (RDP) already

one special case of what is required in condition (ii) of (RDP1) easily follows:
With respect to the notations used in (d) and (e), we have from (RDP) thatd2 and
d3 commute. Indeed,d1+ d2+ d3+ d4 = a1+ a2 = b1+ b2 = d1+ d3+ d2+
d4 and so, by Lemma 1.4(v),d2+ d3 = d3+ d2.

Lemma 3.2. Let (E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDP0).

(i) Let a, b, c ∈ E and a+ b exist. Then from acomc and bcomc it follows
that a+ b comc.

(ii) If a ∧ b = 0, then a+ b, b+ a, and a∨ b exist and are all equal.

Proof:

(i) Supposea comc andb comc andd ≤ a+ b, c1 ≤ c. Because of (RDP0)
there are elementsd1 andd2 such thatd1 ≤ a, d2 ≤ b, andd = d1+ d2.
By assumption, each ofd1 andd2 commutes withc1; so alsod = d1+ d2

commutes withc1.
(ii) Let c be given such thatc ≥ a, b; there is of course at least one such

element. So, for somex, c = x + b, and by (RDP0), there are elements
d1 ≤ x, d2 ≤ b such thata = d1+ d2. Becaused2 ≤ a, b, we haved2 =
0, and soa ≤ x. It follows thatc = x + b ≥ a+ b. In particular,a+ b
exists, and asa+ b is an upper bound ofa andb, it follows thata+ b =
a ∨ b. ¤
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Proposition 3.3. Let (E;+, 0, 1) be a pseudoeffect algebra.

(i) We have the implications

(RDP2)⇒ (RDP1)⇒ (RDP)⇒ (RDP0)⇒ (RIP).

The converse of any of these implications does not hold.
(ii) E fulfils (RDP2) if and only if E is lattice-ordered and fulfils (RDP0).

(iii) Let E be commutative. Then we have the implications

(RDP2)⇒ (RDP1)⇔ (RDP)⇔ (RDP0)⇒ (RIP).

Any implication not shown here does not hold.

Proof:

(i) (RDP2) implies (RDP1) by Lemma 3.2(ii); (RDP1) implies trivially
(RDP); and it is evident that (RDP) implies (RDP0).

Now suppose (RDP0) anda, b ≤ c, d. Then there is ana1 ∈ E such
that a+ a1 = c, and fromb ≤ a+ a1 it follows by (RDP0) that there
aree≤ a andb̄ ≤ a1 such thatb = e+ b̄. Moreover, for somēa ∈ E,
we havea = e+ ā, and becausee≤ a, b, for somec̄, d̄, alsoc = e+ c̄
andd = e+ d̄.

By Lemma 1.6(v), we havēa, b̄ ≤ c̄, d̄, and frome+ ā+ b̄ ≤
a+ a1 = c = e+ c̄, it follows thatā+ b̄ ≤ c̄.

Now chooseb1 ∈ E such thatb1+ b̄ = d̄,and becausēa ≤ b1+ b̄,
there are¯̄a ≤ b1 and f ≤ b̄ such thatā = ¯̄a+ f . Choose¯̄b ∈ E such
thatb̄ = ¯̄b+ f . Let x̄ = ¯̄a+ ¯̄b+ f . Thenā, b̄ ≤ x̄ ≤ ā+ b̄ ≤ c̄ as well
asx̄ ≤ b1+ b̄ = d̄. Sox = e+ x̄ is the interpolant required to show that
(RIP) holds.

The examples given later show that the converse of any of the
implications does not hold.

(ii) Let E fulfil (RDP2). By (i), E fulfils (RDP0).
Leta, b ∈ E. Then froma+ a∼ = b+ b∼, it follows that there are

elementsd1, d2, d3, d4 such thatd1+ d2 = a, d3+ d4 = a∼, d1+ d3 =
b, d2+ d4 = b∼, andd2 ∧ d3 = 0. Then according to Lemma 3.2(ii),
we haved2+ d3 = d2 ∨ d3, and according to Lemma 1.7(ii), we have
d1+ d2+ d3 = d1+ (d2 ∨ d3) = (d1+ d2) ∨ (d1+ d3) = a ∨ b. So all
suprema exist.

It is easy to see that (a∼ ∨ b∼)− = a ∧ b. So also all infima exist.
HenceE is lattice-ordered.

Let E be lattice-ordered and fulfil (RDP0). Let a1+ a2 = b1+ b2.
Setd1 = a1 ∧ b1 andd2, d3 in such a way thata1 = d1+ d2, b1 = d1+
d3.
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We claim thatd2 ≤ b2. Indeed, froma1 ≤ b1+ b2, we get by (RDP0)
thata1 = e1+ e2 for somee1 ≤ b1, e2 ≤ b2, and frome1 ≤ a1 ∧ b1 =
d1, we havea1 ≤ d1+ b2, so we concluded2 ≤ b2. Choosed4 ∈ E
such thatd2+ d4 = b2. Similarly, we may choosed′4 ∈ E such that
d3+ d′4 = a2.

Furthermore,d2 ∧ d3 = 0. For, by Lemma 1.7(i), we haved1 =
a1 ∧ b1 = (d1+ d2) ∧ (d1+ d3) = d1+ (d2 ∧ d3). From this we con-
clude thatd1+ d2+ d3+ d′4 = a1+ a2 = b1+ b2 = d1+ d3+ d2+
d4 = d1+ d2+ d3+ d4, sod′4 = d4. Sod1, d2, d3, d4 fulfil the require-
ments of Definition 3.1(f) of (RDP2).

(iii) (RDP1) trivially follows from (RDP). (RDP) is to be derived from (RDP0)
in the obvious manner (Ravindran, 1996, Lemma 2.12). The other im-
plications are proved in (i).
The examples given later show that none of the implications not shown
holds. ¤

For every possible combination of the different kinds of Riesz properties to
hold or not to hold in a pseudoeffect algebra, we will now give one example.

As an example of a pseudoeffect algebra in which (RDP2) holds, a unit in-
terval in any`-group may serve (see, e.g., Fuchs, 1963, Theorem V.1). In this
way, a noncommutative pseudoeffect algebra has already been constructed; see
Example 2.3.

Example 3.4. (RDP1) 6⇒ (RDP2). Let E be the set of rational functions from
the real unit interval to itself such that no singularities occur. Define+ to be the
pointwise addition of two such functions whenever this leads to a result within
E; let 0 and 1 be the constant functions with value 0 and 1, respectively. Then
(E;+, 0, 1) is obviously an effect algebra and a fortiori a pseudoeffect algebra.
We shall see that (RDP1) holds inE, but (RDP2) does not.

If, for f1, f2, g1, g2 ∈ E, the equationf1+ f2 = g1+ g2 holds, then the
four, continuously extended whenever necessary, functionsf1g1/(g1+ g2), f1g2/

(g1+ g2), f2g1/(g1+ g2), and f2g2/(g1+ g2) obviously fulfil the requirements
of the definition of (RDP). So, by commutativity, (RDP1) holds inE.

On the other hand, (RDP2) would by Proposition 3.3(ii) force an infimum of
any two functions ofE to exist in E, which is not the case. So (RDP2) fails to
hold.

Example 3.5. (variation of Fuchs, 1965, Example 3.10) (RDP)6⇒ (RDP1). Let
G be an additive group generated by the countably many elementsg0, g1, . . .;
let v: (G;+)→ (R,+) be the homomorphism determined by the conditions
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v(gi ) = ( 1
2)i , i = 0, . . .; and letG fulfil the condition that everya ∈ G such that

v(a) = 0 commutes with any otherb ∈ G. Define a partial order inG by setting
G+ def= {x ∈ G: x = 0 orv(x) > 0}; this means that we have fora, b ∈ G

a ≤ b iff a = borv(a) < v(b). (1)

We shall see that0(G, g0) fulfils (RDP), but not (RDP1).
To prove (RDP), leta1,a2, b1, b2 ∈ 0(G, g0) be such thata1+ a2 = b1+ b2;

we may suppose thata1,a2, b1, b2 > 0. We have to show that for somek ∈ G, the
scheme

a1− k k → a1

k− a1+ b1 −k+ b2 → a2

↓ ↓
b1 b2

(2)

holds and every element in it is in0(G, g0).
If v(a1) < v(b1), we putk = 0; if v(a1) > v(b1), we putk = −b1+ a1. Let

now v(a1) = v(b1) and, because the casea1 = b1 is trivial, let a1 6= b1. Because
then,−a1+ b1 commutes withk however chosen, we may putk = gi chos-
ing i large enough to make every element in (2) strictly positive. So (RDP) is
proved.

Now consider again an equationa1+ a2 = b1+ b2, where 0< a1,a2, b1,

b2 ≤ g0, v(a1) = v(b1), anda1 6= b1. For (2) to hold means thatk can be neither
0 nor−b1+ a1. It follows that for a sufficiently large natural numberi , we have
gi ≤ k− a1+ b1 andgi+1 ≤ k; but gi andgi+1 do not commute. So (RDP1) does
not hold.

Example 3.6.(RDP0) 6⇒ (RDP). Similar to the previous example, letG be
the additive group generated freely by countably many elementsg0, g1, . . .; let
v: (G;+)→ (R,+) be the homomorphism determined by the conditionsv(g2i ) =
v(g2i+1) = ( 1

2)i , i = 0, . . .. Define a partial order inG by settingG+ def= {x ∈
G: x = 0 or v(x) > 0}; then again (1) holds. We shall see that0(G, g0) fulfils
(RDP0), but not (RDP).

Indeed, leta, b1, b2 ∈ 0(G, g0) be such thata ≤ b1+ b2. By (1), it is then
clear that for somek ∈ 0(G, g0), we have 0≤ a− k ≤ b1 and 0≤ k ≤ b2. So
(RDP0) holds.

On the other hand, consider the equationg2+ (−g2+ 3g4) = g3+ (−g3+
3g4), and suppose that there are four elements as required by Definition 3.1(d).
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This means that for somek ∈ G the following scheme holds:

g2− k k → g2

k−g2+g3= −k− g3+ 3g4 → −g2+ 3g4−g2+g3+k

↓ ↓
g3 −g3+ 3g4.

(3)

We have especiallyk+ (−g2+ g3) = (−g2+ g3)+ k. From this it follows that
k = z(−g2+ g3) for somez ∈ Z. Now k is required to be inG+, which is only
the case forz= 0. But thenk− g2+ g3 = −g2+ g3 /∈ G+. It follows that (RDP)
does not hold.

Example 3.7.(RIP) 6⇒ (RDP0). Let (E;+, 0, 1, ) be the diamond (Dvureˇcenskij
and Pulmannov´a, 2000, Example 1.9.23); that is, letE={a, b, 0, 1}, and let+ be
defined iff one argument is 0 or both arguments area or both areb, in which latter
cases the sum is 1. ThenE is an effect algebra and a fortiori a pseudoeffect algebra.

As is easily checked,E fulfils (RIP). But it does not fulfil (RDP0) , as is seen,
for example, from the inequalitya ≤ b+ b.

Example 3.8. An example of an effect algebra, so also of a pseudoeffect algebra,
that does not fulfil (RIP) is the standard effect algebra (E(H );+, 0, I ), whereE(H )
is the set of positive operators less than identity in an at least two-dimensional
complex Hilbert space,+ is the sum of two operators defined when it is less than
identity, and 0 is the zero,I the identity operator.2

Let us first show that (RIP) fails whenH is two-dimensional, that is,H = C2.

The positive operators ofH are those self-adjoint operators whose determinant
and trace are≥0; so their matrices have the form

P =
(

t − x y− i z

y+ i z t + x

)
for somex, y, z, t ∈ R such thatx2+ y2+ z2 ≤ t2 andt ≥ 0. Let

A1 = 1

18

(
1 0
0 7

)
, A2 = 1

18

(
7 0
0 1

)
,

B1 = 1

18

(
9 4
4 9

)
, B2 = 1

18

(
9 −4
−4 9

)
.

2 We are indebted to Prof. Robin Hudson for his useful suggestions concerning the following proof.
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Then we have 0≤ A1, A2 ≤ B1, B2 ≤ I . Suppose for some operator

C =
(

t − x y− i z
y+ i z t + x

)

that A1, A2 ≤ C ≤ B1, B2. The conditionsC − A1,C − A2, B1− C, B2− C ≥
0 lead to

2

9
≤ t ≤ 1

2
,(

|x| + 1

6

)2

+ y2+ z2 ≤
(

t − 2

9

)2

,

x2+
(
|y| + 2

9

)2

+ z2 ≤
(

1

2
− t

)2

,

from which we further derivet ≥ 7/18 as well ast ≤ 5/18. So (RIP) does not
hold in the two-dimensional case.

Now supposeH has any dimension≥2, and define the operatorsA1, A2, B1,

B2, when restricted to some two-dimensional subspaceH0, as above, and let them
map to 0 onH⊥0 . Now, for another operatorC, the conditionC ≤ B1 means that
also the kernel ofC includesH⊥0 . So by the same reasoning as before, (RIP) fails
to hold.

We note thatE(H ) is, like the other examples given above, an interval pseudo-
effect algebra; we haveE(H ) = 0(B(H )sa, I ), whereB(H )sa is the set of all
bounded self-adjoint operators ofH.

A further property of Riesz type involves any finite number of elements rather
than a maximum of four.

To make collections of formulas as they will appear in the sequel more easily
readable, we use the following abbreviation. Letdi j ,ai , bj ∈ E, 1≤ i ≤ m, 1≤
j ≤ n. By

d11 · · · d1n → a1
...

...
...

dm1 · · · dmn → am

↓ ↓
b1 · · · bn

we meandi 1+ · · · + din = ai for i = 1, . . . ,m andd1 j + · · · + dmj = bj for j =
1, . . . ,n.
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Lemma 3.9. Let (E;+, 0, 1) be a pseudoeffect algebra fulfilling (RDP1). Let

a1+ · · · + am = b1+ · · · + bn,

where m, n ≥ 1. Then there are elements d11, . . . ,dmn ∈ E such that

d11 · · · d1n → a1
...

...
...

dm1 · · · dmn → am

↓ ↓
b1 · · · bn

and such that for1≤ i < m, 1≤ j < n, we have

di+1, j + · · · + dmj comdi, j+1+ · · · + din.

Proof: The lemma is trivial form= 1 or n = 1, and it is true form= n = 2
because of (RDP1).

Suppose it is true for any pair of integers such that the first is less than or
equal tom, wherem≥ 2, and the second is less thann, wheren ≥ 3. From this
condition, we shall prove that the lemma is also true for the pairm, n. By complete
induction, it then follows that it is true in general.

So leta1+ · · · + am = b1+ · · · + bn. By the induction hypothesis, there are
elementsd11, . . . ,dm,n−2, e1, . . . ,em ∈ E such that

d11 · · · d1,n−2 e1 → a1
...

...
...

...
dm1 · · · dm,n−2 em → am

↓ ↓ ↓
b1 · · · bn−2 bn−1+ bn

and for 1≤ i < m, 1≤ j ≤ n− 2 we have

di+1, j + · · · + dmj comdi, j+1+ · · · + di,n−2+ ei .

Moreover, frome1+ · · · + em = bn−1+ bn, we have by the same hypothesis that
there are elementsd1,n−1, d1n, . . . ,dm,n−1, dmn ∈ E such that

d1,n−1 d1n → e1
...

...
...

dm,n−1 dmn → em

↓ ↓
bn−1 bn
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and for 1≤ i ≤ m− 1,

di+1,n−1+ · · · + dm,n−1 comdin.

It follows that the lemma is true for the pairm, n. ¤

The following consequences of the Weak Riesz Decomposition Property seem
to be notable.

Proposition 3.10. Every finite pseudoeffect algebra(E;+, 0, 1) fulfilling (RDP0)
is commutative.

Proof: Let (E;+ 0, 1) be finite. Then every elementa ∈ E is the sum of finitely
many atoms ofE. Indeed, below every nonzeroa ∈ E lies an atom; otherwise,E
would not be finite. So choose an atome1 ≤ a; if a 6= e1, choose an atome2 below
e′1, wheree1+ e′1 = a; and so on. Then for somen, we havea = e1+ · · · + en;
otherwise,E would not be finite.

Now suppose thatE fulfils (RDP0). Then any two atoms ofE commute. For
either they are equal or their infimum is 0, whence, because of Lemma 3.2(ii),
their sum exists and does not depend on the order. So we conclude that any two
summable elements ofE commute. ¤

Proposition 3.11. Every complete and atomic lattice pseudoeffect algebra(E;+,
0, 1) fulfilling (RDP0) is commutative.

Proof: We claim that for every atoma ∈ E and everyx ∈ E, there is a largest
n ∈ N such thatna≤ x; we will denote this number byja(x). For suppose there is
no suchn. Thenmais defined for anym, so by Lemma 1.6(iv) and the completeness
of E, we havema≤ a− for anym, so

∨
mma ≤ a−, which means that (

∨
mma)+ a

exists. By Remark 1.8, we conclude (
∨

mma)+ a =∨m(ma+ a) =∨mma, that
is, a = 0.

It is now easy to see that for everyx ∈ E, we may writex =∨a∈A(E) ja(x),
whereA(E) is the set of all atoms ofE.

As in the proof of Proposition 3.10, we see that multiples of two atoms
commute. So by Remark 1.8, we have, for anyx, y ∈ E,

x + y=
∨

a∈A(E)

ja(x)a+
∨

a∈A(E)

ja(y)a=
∨

a∈A(E)

∨
b∈A(E)

( ja(x)a+ jb(y)b)= y+ x.

¤
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4. po-GROUPS WITH RIESZ PROPERTIES

We define the different properties of Riesz type for po-groups in exact analogy
to those of pseudoeffect algebras.

Definition 4.1. Let (G;+,≤) be a directed po-group with neutral element 0.

(a) For a, b,≥ 0, we writea com b to mean that for alla1, b1 such that
0≤ a1 ≤ a and 0≤ b1 ≤ b,a1 andb1 commute.

(b) We say thatG fulfils the Riesz Interpolation Property(RIP) if, for any
a1,a2, b1, b2 such thata1,a2 ≤ b1, b2, there is ac ∈ G such thata1,a2 ≤
c ≤ b1, b2.

(c) We say thatG fulfils the Weak Riesz Decomposition Property(RDP0)
if, for any a, b1, b2 ≥ 0 such thata ≤ b1+ b2, there ared1, d2 ∈ G such
that 0≤ d1 ≤ b1, 0≤ d2 ≤ b2, anda = d1+ d2.

(d) We say thatG fulfils theRiesz Decomposition Property(RDP) if, for any
a1,a2, b1, b2 ≥ 0 such thata1+ a2 = b1+ b2, there ared1, d2, d3, d4 ≥
0 such thatd1+ d2 = a1, d3+ d4 = a2, d1+ d3 = b1, andd2+ d4 = b2.

(e) We say thatG fulfils the Commutational Riesz Decomposition Property
(RDP1), if, for any a1,a2, b1, b2 ≥ 0 such thata1+ a2 = b1+ b2, there
ared1, d2, d3, d4 ≥ 0 such that (i)d1+ d2 = a1, d3+ d4 = a2, d1+ d3 =
b1, d2+ d4 = b2 and (ii)d2 comd3.

(f) We say thatG fulfils theStrong Riesz Decomposition Property(RDP2) if,
for anya1,a2, b1, b2 ≥ 0 such thata1+ a2 = b1+ b2, there ared1, d2, d3,

d4 ≥ 0 such that (i) d1+ d2 = a1, d3+ d4 = a2, d1+ d3 = b1, d2+
d4 = b2 and (ii)d2 ∧ d3 = 0.

Proposition 4.2. Let (G;+,≤) be a directed po-group.

(i) We have the implications

(RDP2)⇒ (RDP1)⇒ (RDP)⇒ (RDP0)⇔ (RIP).

There are no more implications holding between these conditions.
(ii) G fulfils (RDP2) if and only if G is lattice-ordered.
(iii) Let G be Abelian. Then we have the implications

(RDP2)⇒ (RDP1)⇔ (RDP)⇔ (RDP0)⇔ (RIP).

The implication not shown does not hold.

Proof: (ii) Let (RDP2) hold. Similarly as for Lemma 3.2(ii), we may prove
that, for a, b ∈ G, from a ∧ b = 0, it follows thata ∨ b = a+ b. Furthermore,
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it is easy to see that, fora, b, c ∈ G, if a ∨ b exists, we havec+ (a ∨ b) = (c+
a) ∨ (c+ b). Now, we may, analogously to Proposition 3.3(ii), prove that, for
a, b ∈ G+,a ∨ b always exists.

Using Birkhoff (1995), XIII,§3, Eq. (7), we conclude that, fora, b ∈ G+,
(a ∨ b)− b = (a− b) ∨ 0 holds. BecauseG is directed, we haveG = G+ − G+

(Fuchs, 1963, Proposition II.1). So, for allg ∈ G, g∨ 0 exists, which, by Birkhoff
(1995), XIII, §3, Lemma 1, means thatG is an`-group.

Conversely, in all̀ -groups, (RDP2) holds (Fuchs, 1963, Theorem V.1).
(i) If (RDP2) holds,G is, by (ii), an`-group. Elementsa andb in an`-group

are such thata ∧ b = 0 commute (Birkhoff, 1995, XIII,§3, Eq. (13)); so (RDP1)
holds. From (RDP1) follows (RDP), and from (RDP) follows (RDP0) trivially.
(RDP0) and (RIP) are equivalent according to Fuchs (1965), Theorem 2.2.

That the converse implications in three cases do not hold is seen from the
examples given above for pseudoeffect algebras. So the group of rational funtions
from [0, 1] toR with no singularities (see Example 3.4) fulfils (RDP1), but not
(RDP2). The group described in Example 3.5 fulfils (RDP), but not (RDP1). The
group described in Example 3.6 fulfils (RIP), but not (RDP).

(iii) (RDP1) trivially follows from (RDP). (RDP) is to be derived from (RDP0)
in the obvious manner (Goodearl, 1986, Proposition 2.1). The other implications
are proved in (i).

Example 3.4 shows that from (RDP1), property (RDP2) does not follow. ¤
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